General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memarandum 33-764

Some Existence and Sufficient Conditions
of Optimality

Touraj Assefi

¥
i
(MASA~CR=-1UESTE) SCME T“XISTENCE AND M'76--230929‘z
SUFFICIENT CCNDITICXNS CF OPTIMALITY (dJet
Propulsion Lat.) 24 ¢ HC $3.50 CSCL 1ZE

Unclas
G3s60 21510

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

February 15, 1976



PREFACE

The work described in this report was performed by the Guidance and

Control Division of the Jet Propulsion Laboratory.

JPL Technical Memorandum 33-T764 iii



CONTENTS

I, INntroduction..cicecssnsarecrssarscnsnsoasaisosososaraorenatsnersasassns 1

II. Sufficiency ConditionsS..iiscisaversnasrnonnennns Crrr e crrrerrataarees 2
III. Multiple-Cost Functionals.i.eivviereneanvannansns teeretesrtesaenansassnse B

IV. Existence of an Optimal Control....civvevsnessonnvans cereanaseenrarssaei]

V. ConClusSionS.euiseeesassercarsonassonsonronssvssntorsesasassssssnssns eveaaalB
RE O eNCeS . eeneusorasransasrsssasnssarontassnsnsssnnsnsvensssnctosonsnasessassll
FIGURE

1. Optimal hypersurface....iveicasrtessaraansssarsssaas cressasannarenssl

PRECEDING PAGE BLANK 1OT FILMED

JPL Technical Memorandum 33=764



vi

ABSTRACT

Some existence and sufficient conditions of current interest in the
field of optimal-control theory are discussed, This report briefly describes
the role of existence and sufficiency conditions in the field of optimal
control. The existence theorems are discussed for general nonlinear systems.
However, the sufficient conditions pertain to "nearly” linear systems with
inteegral convex costs. Moreover, a brief discussion of linear systems with

multiple=-cost functions is presented.
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I.  INTRODUCTION

The problem of automatic control has been discussed for many years, and
various techniques and results have been developed to handle control problems,
Within the last two decades, such problems have become of much greater interest
due to the development of new control devices and the feasibility of implementation
via aigital computers. Although we shall discuss the optimazl-control problenm
from a seneral point of view, where the cost functions, the constraints, and
the target sets are quite general, some special examples will also be presented,
Some of the typical problems of optimal-control problems are:

(1) Minimization of the fuel consumption of a given vehicle from a

given initial state to a target state.

(2) Minimization of the time to transfer s given state to a final state,

(3) Minimization of energy.

Modern control theory frequently utilizes very complex systems, and,
therefore, it is often impossible to determine an ¢ntimal control experimentally
withont a complete theoretical investigation. In the optimal-control theory,
the physical system is often characterized by a state variable differential
equation model; it may not, in general, represent the intrinsic physical
reality that it purnorts to describe. In these situations, the optimal solu-
tion may not indeed exist, althousch one may intuitively feel that the solution
should exist. If the optimal control does not exist, it can be implied that
there is something degenerate about the physical system (Ref. 1). Thus, the
existence of optimal contrel conveys a very important physiszl significance.

In this report, some general existence conditions for optimal control are
discussed (see Refs. 2 through 7). If the solution to the optimal-control
problem exists, then it will satisfy certain necessary conditions. Loosely

speaking, solutions satisfying these boundary conditions are called extremal.
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However, there is no guarantee that any extremal is an optimal soclution. For
the general nonlinear system, there is no such guarantee nor sufficlent condition
of optimality. 1In recent years, the sufficiency conditions have virtually been
ignored. However, some sufficient conditions of optimality with ordinary
differential equation constraints have been studied by Lee {Ref. 5), Mangasarian
(Ref. 8), Neustdat (Ref. 9), Lee and Markus (Ref. 10), and others (Refs. 11
through 15), That is, some conditions are presented that extract the optimal-
contrel solution from the set of extremal controls,

In this report, we shall first discuss these sufficlent conditions which
guarantee an optimal solution, and also some features of multiple-cost functions
(Ref. 16) as well. Next, we shall discuss the existence of optimal control.
Examples are provided to illustrate the important features of each part (see

Refs. 17 through 20).

II. SUFFICIENCY CONDITIONS
The system to be studied here, unless otherwise spec%fied. is represented
by Eq. (1) and the cost functional to be minimized by Eq. (2):
% = A(t)x + B(t)u (1
where A(t) and B(t) are continuous n x n and n x m matrices, respectively, for
each t in a given finite interval [tO,T] and x(to) = X5 X 1s the system

state, an n-vector, and u is the control, an m-vector, and the cost is

Clu) = g{x(T)) + Co(u) (2)
where
T
Cq(u) =I [f‘o(t,x) + 00(t,u)ldt
to

and g(x), fo(t,x}, and h%(t,u) are all real continuocus functions in all their

arguments. Also, assume that fo(t,x),ho(t,u) are non-negative and convex
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functions for each t.

Denote U(ty,T) as the set of ali measurable functions u(t) on [tO.T] such
that u(t) € 0 for all t, R is a set which is in R™, We write u € Q, whenever
u is a member of U(ty,T). u e @ is called admissible control., Also, 1.t
K(T,xn} denote the attainable set of the system given by Eq. (1). That is,
given the initial state, K(T,xo) is the set of all points in R" to which Xg ean
be steered to via an admissible control,

Let

t
x0(t) = I [£9¢t,x) + hO(t,u)ldt (3)
Lo
and ﬁ(T,xO) be the attainable set corresponding to the (n + 1) dimensional
state equation.given by
x(t) = A(t)x + B(t)u, x(tq) = xg
$0e) = £9t,x) + nlt,u), %0ty = 0 )

Let us denote fhe element of system (4) by Q, where X(t) = (xo(t),x(t)).
Thus, Q(O) = (0,%xq). In what follows, we assume the system Q(T,xo) has nonempty
interior in Rn+1. The following definitions are also needed.

Definition 1. An admissible control u(t) on [t4,T], which steers (0,xp)
to a boundary point of Q(T,xo), is called an extremal control, and the corres-
ponding response X{(t) is called an extremal response.

Definition 2. A control v ¢ @ is called optimal if C{v) = C(u) for all
vef. For Lemma 1 and Theorem 1, which follow, assume R is such that uegQ,
whenever lu(t)WP < ah@(t,u(t)), with p>1 and a>o0.

Lemma 1

K(T,xqy) corresponding to the system given by Ea, (4} is closed and convex.

If in addition @ < R" is compact, then Q(T,xo) is compact and convex (Ref. 1).

Remark 1. It is a standard result to show that an optimal-control u ¢ @

corresponding to the cost Co(u) exists. If g(x) is convex in R™, then an
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optimal control corresponding to C(u) 2lso exists (see Refs. 1, 5, and 7).
Lemma 2

A necessary and sufficient condition for the control u¥*(t) with the
response x%(t) and the cost CO(U) to be extremal is that there exist a vector

ft) = (ngrn(t)) satisfying:

ar0
n(t) = =ng=—0-=(>t,x*%) - n(L)A(t)
ax
f]o - 0, ﬂo ( 0

and
ngh¥(t,u®) + n(&)B(E)us = max fnghO(s,u) + n(e)B(t)ul
uefl
almost everywhere (a.e.).

Remark 2. It can be shown that an optimal-control u%*(t)eU(t,T,) with
response x*(t) is extremal; however, u*(t) may not be unique. If ho(t,u) is
strietly convex in u for each t, then u*(t) will be unique. In fact, in such a
case, any two extremal controls steering (U,XO) to the same boundary point of
K(T,xo) must be equal almost everywhere., The uniqueness of an optimal control
requires very stringent conditions. So it is natural to introduce another cost
function C4(u) and then choose a control which minimizes C1(u) among the ones
that minimize Cp(u).

Theorem 1
Consider the system given by Eq. (1) with the corresponding cost

T
clu) = g(x(T)) +.[ [£%¢t,x) + nOt,u)ldt

o
fizsume that g(x) € ¢! and is convex in RP.

(i} There exists a2 nontrivial solution x%(t), n*(t) of the system

x*% - A(t)x* + B(t)u#*
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afo
A = - A+ — (t,x¥)
ax
such that x*(ty) = xg, n(T) = -grad g{(x*(T)}), and u*(t) is defined by

)

-hO(t,u¥%) + nB(t)u* = max [-n0(t,u) + nB(t)ul
ueR
and is an optimal control with the corresponding optimal response x¥(t).
{ii) If ho(b,u) is strictly convex for each t, then u*(t} is a unique
optimal control.
A geometrinal prqof, outlined bhelow in three steps, is presented.
(1) Consider the family of hypersurfaces Sc:xD +g(x) = ¢ in R™*1, 1n
Refs. 1 and 7, it is shown that there exists a unique hypersurface
Sm among, this family such that Sm is tangent to K(T,xg), and m
is the optimal cost (see Fig. 1),
(2) Let s ¢ Q(T,xo)ﬂsm and g be the tangent hyperplane passing through
s. Let A%(T) = (=1,n%(T)) be normal to w_ at s. Also, let u*(t) be

the extremal control steering (O,XD) to 5 = Q“(t) = (xio, x*(t)), and

let (-1,n*(t)) be such that n*(t) is the soluti.n of

ar?

Alt) = ~== (t,x*) - n(t)A(L)
X

n*(T) = -grad g(x*(T))

By Lemma 2, u¥*(t) satisfies the maximal principle with the adjoint
response n*(t)., Thus, u*(t) is optimal since m is the optimal cost.

(3) 1If ho(t,u) is as in (ii), then s ¢ Q(T,xo)rism is the only point, and
m, is unique. Hence, from Remark 1, u*(t) must be unique.

Example 1. Consider the system given by Eq. (1) with the cost

Clu) = x (T)Gx(T) + x°(T)

JPL Technical Memorandum 33-T6Y4
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sach that G is a constant symmetric positive semidefinite matrix,

%0 = x"(8)W(s)x(s) + u’(s)P(s)u(s)
where W(s) and P(s) are both symmetric and continuous matrices for s ¢ [tO,T],
and the prime of a matrix denotes its transpose. Let us further assume that

W(s) is positive semidefinite and P(s) positive definite for all s. Let u ¢ R

whenever

T
I u‘(s)P(s)u(s)ds ¢ o
to

Since this problem =atisfies the conditions of Theorem 1, and the con-

I}

ditions that ho(t,u) = u'(t)P(t)ul{t) is strictly convex and g{x) = x’Cx
is convex and of class C1 are satisfied, then from Remarks 1 and 2 there
exists a unique optimal control u#(t) = P'1(t)B'(t)n'(t) with a unique response
x*(t) determined by
x(6) = A(E)x(t) + BEIPH(L)B (E)n (b)), x(ty) = %,
ard

alt) = -n(t)A(t) + ;;— (L, x(t)) = -n(L)ALL) + 2x (L)W(t), n(T) = «2x"(T)G
where u%*(t) steers %%(0) = (O,XO) to the unigue point at which the surface
Sm:xO + x'Gx = m is tangent to Q(T,xo) (see Fig. 1). In what follows, a
sufficient condition for ootimality 1is presented for a system described by a
set of equations different from (1).

Consider the system given by

£0(t) = £9¢t,x) + kOct,u), x0(ty) = (0,x0),£0,k0 ¢ Rl

(5)
x(t) = A(E)x + k(t,u), x(ty) = xq
where tke coefficients fo, b?olax, K, ko, and A are continuous in all arguments,

and fo(t,x) is convex in x for each t ¢ [tO,T]. The admissible controls u(t)

are bounded on [t4,T], i.e., u(t) belongs to a nonempty restraint set @ C RT,
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henpem 2

——————

Paprt _I. Consider the system given by Eq., (5) and a closed target set G in

R? with the cost Colu) = x%(T) and an admissible control u(t). Assume the
existence of u*{t) with the responze QniL) = (x*o(t),x'kc)), satisfying the
maximal principle

-ko(t,u') + n(t)k{t,u*) a.8. max{-ko(t,u) + n(t)k(t,u)] | (6)
Qe

where n{t} iz a nontrivial solution of
2£0 .
nlt) = = (t,x7) = n(t)A(L)
)4

and n(T) is the inward normal to the boundary 3G of G. Then, u#(t) is optimal,

Part. II. Assume

(a) G = R7,

(b) The cost S{u) = g(x(T)) + xO(T), where g is differentiable and
convex in R",

{e) The admissible control u* ¢ @ satisfies the maximal principle by
Eq. (6) with n{T) = -grad (x*(T}).

Conglusion., u¥*(t) is optimal,.

The proof of the thecorem relies heavily on two facts:

(i) (Bfo/ax) (t,x)(w=-x) = fo(t,x) = fD(t,w), i.e., the convexity of
£9¢t,x) in x, for each fixed t.

(i1) If u* ¢ @ such that the response X*(t) = (x*O(t),x(t)) initiates from
(O,XO), then Q(T)Q* = Q(T)G, where f(t) is as in Lemma 2, and # is in
the set of attainability of the system given by Eg. (5) in Rn+1
(see Ref, 7).

Example 2. Coniider the controllable system %x(t) = Ax(t) + Bu(t) in R"

with cost

T
CO(U) = IO u’(s)P(s)u(s)ds
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the target G = {x:y(x) = x,2 4 x,2 4 ... + x,® =1 5 0}, x(0) = xg, and P,
& are as in Example 1.

From Remark 1, assuming that the set of attainability intersects the
target set, then there exists an optimal-control u®(t) whiech is unique, since
ho(t,u) = u' (t)P(t)u(t) is strictly convex in u for each fixed t « [tg,T], and
by the maximal principle u*(t) = P~1(t)B’(t)n*(t)’, where n®(t) is the unique
solution of

n{t) = -n(t)A
with
n{T) = =grad ¥{x™(T)) = -2(x1'(T), veey xn'(T))
and x®(t) is the solution of
k(t) = Ax + BP1(t)B n*(t)
Note: 3G = {x:y(x) = 0} and v # 0 on 8G. Hence n(T) =z -grad y(x*{T)) is the

inward normal to 3G at x¥(T),

III., MULTIPLE-COST FUNCTIONALS

Define the following system:

x{t) = Alt)x + B(t)u, x(ty) = x4
%0ty = 9, %) + nO(t,u), x2(0) = 0, x%(t) « R’ (7)
V) =t x) + nlie,u), x'(0) = 0,x'(t) ¢ R’

1 0

Assume that fo(t,x), f1(t,x) e C, h1(t,u) ¢ CY are convex non-negative
functions for each x and u, and G is the target set.

Let the admissibility be as in Theorem 2 with a further restriction on R,
namely, % is compact and convex. Let K(T,xo) denote the set of attainability
of the system given by Eq. (7). .Our objective is to find u* ¢ 9 with response
x*(t) so that

{1) x*(T) ¢ G.

JPL Technical Memorandum 33-764



(ii) Colu) = Colu) for u ¢ ©, with the corresponding response x(t) in G

at t =T,

(111) Cy(u*) = C4(u) for all u ¢ 2 such that the corresponding response is
in G at t = T and Cgplu) = Cylu*).
Definition 3. The saturation set st corresponding to set ﬁ(T,xO), is the
set of all points (yo,y) ¢ Rn+1 such that there exists (xo,x) ¢ ﬁ(T,xo) Wwith
0.,0 ¢

X s y- and x = v. Similarly the saturation set ?S, corresponding to set

f(T,xO), is the set of all points (y0,y',y) ¢ R7*2 such that there exists

a point (xo,x1,x) ﬁ(T,xO) with x = vy, x0 < yo, and x| ¢ y1.

[ 14]

I
The following observations are made: K(T,xo) and K(T,xo) are gonvex and
A A
compact. It is not hard to show that K(T,xo) and KS are the orthogonal proiections

of K(T,x," aui KS on (x%,x)-~space in R"*!

, and K(T,xo) is the orthozonal
projection of Q(T,xo), QS, and ﬁ(T,xO) on the x-spacc RT,
Theorem 3.

Assume that there exists an admissible control u ¢ @ which steers the
response of the system given by Eq. (1) to G at t = T. Then there exists

a nontrivial solution x*(%), n¥{t), q¥(t) of the system of equations

x(t) = A(t)x + B(t)u#, x(tg) = xq

ar0
q(t) = =q(L)AlL) = n? a— (t,x)
ax
a£0 a£0
ALY = —n(E)A(E) = 2 — (t,x) = 0! — (t,x)
ax% ax

with either
(1) x(T) ¢ G, n® <o, n! <0, q{T) = n(T) = @, or
(ii) %(T) ¢ boundary of G, n® <0, n' = 0, q(T) = n(T), where n(1)

is the inward normal to G at x(T), and

noho(t,u*) + glt)B{tiu¥® = max [noho(t,u) + al(t)B(LIu]l
uefl
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noho(t,u*) + n‘hl(t,u) + n(t)u*B(t) = max {noho(t,u) + n'hl(t,u) + n(t)B(t)u}
uell

If no and n1

are non-zero, then u*(t) is an optimal control with responses
x*(t), n*(t), and q®*(t).

The proof of Theorem 3 is based on Lemmas 3 and 4.
Lemma 3

A necessary and sufficient condition for the control u* ¢ @ to steer
(0,0,%5) with the corresponding respense ¥(t) = (xo(t), x1(t), x(t)) to the

common boundary of K(T,xo) [ Es at t = T is that there exist a nontrivial

response A(t) = (no,ni,n(t)) of the equation

ar0 ar ]
A(E) = =n(t)A(t) = 00 == (t,x) =~ 0} === (£,x)
ax X

with no, nt both non-negative constants, such that
n%n0¢t,u®) + nThl(c,u%) + n(£)B(E)u* = max (nOn0(t,u) + nlnl(t,u) + n(L)B()u)
uel

The proof of Lemma 3 is similar to Lemma 2 (also see Refs. 1 and 16).

Remark 3. In case ho(t,u) iz strietly convex in u for each t, th=n
Theorem 4 is reduced to a single cost function Co(u) of the system given
by Eq. (1).
Lemma 4

If K(T,xo) N G is nonempty, then the existence of an optimal control is
guaranteed, i.e., if there exists an admissible control u in & steering x(t) to
x{T) ¢ G, then there exists an optimal control. In Remark 1, the existence is
always guaranteed since K(T,xo)fﬁ G is always nonempty.

The following example shows the applicability of Lemma % with a single

cosL Tmedion.
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Example 3. Consider the linear system:

1
+
=

with the cost

t
Co(u)zj dt = t < =
0

[}

{usjul = 1) C RY, the initial set be a fixed point

X1(0)

and G = {x:x1 = 0,|x2! = 1}, then it can be shown that K(T,xo) NG = @, im-

Let ¢

plying that such an initial condition in R can be transferrec to the set G

with an optimal control.

IV. EXISTENCE OF AN OPTIMAL CONTROL

So far the 2xistence of an optimal contrel for linear systems with convex
integral cost has not required many stringent conditions; for nonlinear systems
this is no longer true. In linear systems we have a lot of nice properties,
e.g., a control function u(t) satisfies the raximal principle if and only if it
is extremal., This fact is no longer true for nonlinear systems. In Ref. 1, a
few examples to this effect are suppiied.

In order to discuss an existence theorem for a moving target with a
peneral cost, we shall impose the following stringent conditions:

(1) The nonlinear process x(t) = f{x(t), u{t),t}, where f ¢ C1(Rn+m+1)-

(2) Initial and target sets Go(t) and G1(t), respectively, are compact

nonempty sets and continuously varying in R" for all & « (TO,T)- .
{3) A control restraint % is a nouempty compact sebt continuously varying

in R™, for (x,t) ¢ R x (15,T).
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{4) Inequality state constraints h’(x) 50, «.., hF(x) = 0, where
hi(x). 1=1,2, voo, r, is real and continuous on R".

(5) A nonempty family F consists of measurable functions u(t) on various
time intervals (to,t’) C (TO,T) Wwith response x(t) steering x(to)e

G(ty) to x(t1) ¢ G(t,), and u(t) ¢ 2, with condition (4) satisfied.

Theorem 4

Let u ¢ F, with the corresponding cost of the syatem given by
t 9 0
Clu) = g(x{ty)) + £ (t),ult),t)dt + max Y(x(t))
t

0 t’E(t’O’t’1)

1, g and v ¢ CO and are all real functions. Along with conditions

where f© e C
(1)=(5) above, we impose the following additional assumptions:
(a) There exists a uniform bound [x(t)| = b ont e (ty,tq) for all
responses to controls u ¢ F.
(b) The velocity set 9(x,t) = {£0(x(t),ult),t),f(x(t),u(t),t)tu ¢ a}
is convex in RP*' for each fixed (x,t).
Then there exists an optimal control u*(t) on [to*,t1*] C [15,T] in F mini-
mizing C(u).
The proof relies very heavily on establishing the fact that the set of
attainability corresponding to the system is compact and varies continuously in
Rn, for te [10,T]. It can be shown (Ref. 10) the. F is weakly compact, implying
the existence of a control u*{t) and an admissible sequence nk(t) Wwith corresponding
decreasing costs, such that
lim C(u™) = C(u®)
n+wo
It is important to notice that if the initial condition ty* in [ty T]
is fixed, and F (the corresponding admissible class on various intervals

[tO*’T1] i [to',T})is nonempty, and the rest of the conditions in Theorem
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=

4 are satisfied, then there would exist an optimal control u#*(t) on [tol,t1*]

in F minimizing C(u) among all u ¢ F,

Remarks
(i) 1If fo = g = 0, then we shall have a minimax problem.

(ii) In Ref. 1 and Theorem 4, the convexity of the velocity set plays a

erucial role, but in Ref. § several examples are given where the
velocity set is not convex and the optimal control exists.
Now let us give a few examples with respect to Theorem 4,

Example 4. Consider the system:

|*1 -
ia - -X.]U

in R2, m = 1, x(0) = (=%,0) with a cost

t1 1 1 dx
C (U) = dt :j
0 0 1+ x,° -1 1 4 y@

]
—_

an admissible family F with restraint set &
x(t,) = (1,0).

For every admissible u e @, and {tO,T] = [0,2], there exists = response
x1(t) =t -1 and xz(t), and if we let ju(t)| = 1, xa(x1) = xz(t(x1)), then
we will obtain

2 2
-(1"x1) 1-}(1

— xz(x.[) g —

2 2
on xe[=1,1]. Since the hypotheses of Theorem 4 are satisfied, then there
exists an optimal control (in fact, there are two optimal controls: u(t) =
and u{t) = -1).
Example 5. Let iT = sin 2mu, iz = cos 2tu, i3 = =1 in R3 be a system

with the cost
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t
1
CO(U) = ]0 (X12 + Xza)dt

0 as in Example 4, and x(0) = (0,0,1), x(t1) = (0,0,0), 0=t = ty 2, be,
respectively, in Gy, Gy.

Solution. The velocity set is not convex. If t4 = 1, Wwe can construct a
sequence of controls uX(t) such that

sin 27uX(t)

sin 2rkt
for k = 1,2, ...

caos 2nuk(t) cos 2kt

where these piecewise continuous controls are easily made (see Refs. 1 and 7).

For each admissible uk ¢ ®, the corresponding response is
1 - cos 2rkt sin 2wkt K
x1k(t) T e— xzk(t) = ’ x3 () = 1 =t
2Tk 2tk

with x%(1) = 0, xX(1) = 0, x3%(1) = 0,

]
1 -~ cos Z2nkt 1
Coluk) = dt = and lim Cy{u¥) = o

0 219K2 onfK? ko

But there is no optimal control on (0,1), since if u* is optimal, then
C(«,r 2 a2y .
u} o= (%% + x5,*%)dt = 0
0

would imply that x*1(t) = x*2(t) = 0, which implies that sin 2mu*(t) =

cos 2qu*(t) = 0 for almost all t. Hence, an optimal control does not
exlist,

Example 6. We give an example where condition (2) is not satisfied.

Consider % = u, where u is continuous on (0,2) and x(to) = 0. Define Gi(t)

such that

>
i
™
o
n
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A
-

—
H

y
1A
ot
IA
n
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where the control restraint is the region -1 = u =1, with the cost

t
Clu) = (x(t) - t)dt

to
Let
K k + 1
uk(t) = on [?, ]
k + 1 k
then
k + 1
C(u ) =
k
3K3

It is obvious G(uk) + O when k approaches infinity. If v is the optimal
¢ atrol on [to*,t1*], then we must have C(v) = 0; therefore, x(t) =z t. We
can imply that to = 0. Hence, no uvotimal control exists.

Some of the conditions of Theorem 4 can be relaxed. For example, Neustadt
{Ref. 9) and Warga (Ref. 19) studied the existence of optimal controls in the
absence of some convexity conditions. Also Gamkrelidze (Ref. 20) showed that
if the velocity set given by condition (b) of Theorem 4 was not convex, then
there would exist a sequence of controls whose limit trajectory converges Lo a
certain curve satisfying the given boundary conditions with its corresponding
cost function approaching a lower bound. This limit is called the optimal
sliding regime. Thus, in Theorem 4 in the absence of convexity of condition
(b), if it is possible to transfer xoeGO(t) to x1€G1(t), then there would exist
a minimizing sequence of controls Ugy Ugy wony Uy, and the trajectories x1(t),
x5(t), vy %, (t), ... such that

lim Clu,) = M
k+m
where M is the infimum of the cost functions transferring x5 to x,. Moreover,

the sequence xk(t) converges uniformly to some limit trajectory x(t).

JPL Technical Memorandum 33=-764 15
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V. CONCLUSIONS
Some existence and sufficient conditions of optimality of single-~ and
multiple-cost functions have been discussed. It has been established that the
existence and sufficiency conditions ecannot be taken for granted. It has also
been shown that some stringent conditions on various parameters of both linear
and nonlinear systems are needed in order to extract the optimal-control solu-
tions from the set of extremals. Finally, examples conveying the effectiveness

of the conditions were constructed,
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